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Crossover to self-organized criticality in an inertial sandpile model
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We introduce a one-dimensional sandpile model that incorporates particle inertia. The inertial dynamics are
governed by a parameter that, as it passes through a threshold value, alters the toppling dynamics in such a way
that the system no longer evolves to a self-organized critical state. A range of mean-field theories based on a
kinetic equation approach is presented that confirm the numerical findings. We conclude by considering the
physical applications of this model, particularly with reference to recent experimental results.
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I. INTRODUCTION moving particles only come to rest on those sites whose
slopes are not too steep, where the definition of “too steep”
The concept ogelf-organized criticalitfSOQ was intro-  is controlled by a parameter. Our main result is the crossover
duced by Bak, Tang, and Wiesenféld as a possible expla- between SOC and non-SOC behavior as this parameter
nation for the common occurrence of scale-invariance in naPasses through a threshold value. The existence and value of
ture. To demonstrate this behavior, they introduced théhis transition point has been confirmed by extensive numeri-
sandpile modela driven dissipative cellular automata whosecal analysis, mean-field theories, and qualitative reasoning.
dynamics are defined by local interactions. Despite the short- This paper is arranged as follows. Our model is defined,
range dynamics, the system organizes itself into a nonequiind some of its immediate consequences explored in Sec. Il.
librium critical state with no finite correlation length and In Sec. Ill, the results of numerical simulations are given for
hence no characteristic length scale. A feature common to aihe simplest nontrivial sandpiles. These results are confirmed
SOC systems is that the sizes of fluctuations follow powerby the mean-field analysis given in Sec. IV, where a rate
law distributions, a direct consequence of the scale invariequation approach has been adopted. Finally, in Sec. V, we
ance. However, comparisons with real systems have mexplain the nature of the transition threshold and discuss ap-
with only partial success. Power laws were observed in ®lying the model to real physical systems.
granular mixture when avalanches were initiated by watering

the pile[2], but not in a pile of glass beads that was gradu- Il. MODEL

ally tilted [3]. Adding grains individually to a conical sand- , ) o i )

pile only showed power laws for sufficiently small piles. A one-dimensional sandpile is defined by a set of integer
Recently, Fretteet al. [5] performed experiments on one- heightsh;, i=1,... L, or equivalently by the local slopes

dimensional piles of rice, and found power-law behaviorZ ="i—hi.1. The right-hand boundary is taken to be open,
only for grains with a sufficiently large aspect ratio. In light Z.=h., whereas the left-hand boundary is treated as closed,
of these experiments, we believe it would be informative toZo=0. Particles are added sequentially to randomly chosen
construct a sandpile model with greater physical applicabilSites, increasing their height by one unit. In the limited local
ity, while hopefully retaining some of the interesting dynam-sandpile(LLS) model[10], a sitei becomes unstable when
ics. z; becomes greater than thgtical slope parameter z Any

One important ingredient missing from the basic model issuch unstable site willopple z. particles will leave sitd,
inertia. To the best of our knowledge, there have only bee@nd will move to site +1 (or leave the system if=L), so
two attempts to construct an inertial sandpile model. Prado

and Olami[9] chose to associate moving particles with a Zi—1—Z17 2,

decrease in the local stability, and found SOC behavior only

for small systems, in both one and two dimensions, thus z—2z— 2z, (1)
giving an explanation for the results [A4]. Krug, Socolar,

and Grinstein[8] gave a single measure of momentum for Zii1—Zis 1+ 2,

the entire cluster of moving particles in a one-dimensional
system. They found that their inertia parameter needed to beith equivalent rules for toppling at boundaries. It is now
fine tuned to zero for the system to become SOC. possible forz,_; and/orz . ; to become unstable and topple,
In this paper, we consider an interesting way of incorpo-and an avalanche will begin. We call the series of the initial
rating inertia into the sandpile model. A full description of topplings at sites—1,i—2,i—3, ... theback-avalanche
the model is given in Sec. Il, but briefly we suppose thatA back-avalanche propagates to the first gitei with
z;<0, where such sites are callégbughs In terms of the
slopes before particle addition to sitez,_;=1 will also
*Electronic address: David.Head@brunel.ac.uk stop a back-avalanche. Some previous literafddd refers
TElectronic address: G.J.Rodgers@brunel.ac.uk to such instances adide eventsTopplings occur on a time

1063-651X/97/563)/25737)/$10.00 55 2573 © 1997 The American Physical Society



2574 D. A. HEAD AND G. J. RODGERS 55

Zn

(a) (b) (©

FIG. 1. An example of the toppling process in the MILLS model, 4o 2 andz;,= 3. (a) Particle added to a site with critical slope. The
site becomes unstable and topplgs.The first toppling particle sticks to the adjacent site, giving it a local slope of 3. The site marked with
an asterisk is still in the process of toppliri@) The second particle slides through the site with slope 3 to stop at the next site. All sites in
this region are now stable.

scale much smaller and separated from that of particle addimplementation of inertia the sandpile takes a microscopi-
tion, in that no more particles are added to the pile until thecally smooth, realistic shape which further justifies its study.
avalanche is over and every site has become stabtez( We can immediately make some general observations
Vi). about the MILLS model. Since the particles toppling from an
As this model stands, the inertia of the toppling particlesunstable site all move at least one step, the slope of the site
has been ignored, any momentum in the topple is assumed tg the immediate left will always increase y independent
be dissipated instantaneously from the sandpile as soon a$ the value ofz,,. Thus the back-avalanches in this model
the particles have moved. The previous attempts to incorPoyre identical to those in the standard model, and conse-

rate inertia into the systef,9] used quantities that evolved g ently troughs are still important as bounds of the left-hand
throughoutt thtf] avalatmchel atr;]d hence mtroduceg a formt O%dge of an avalanche. However, troughs no longer necessar-
mleergo%rm t% ﬁnsystﬁg}[ Pe u'lsrepsapﬁ;twgnzon;'qg at?n(:e y bound the right-hand edge of an avalanche as they did in

pping N J the LLS model. Indeed, no expression involving a single site
independent quantity, but nonetheless intuitively mimics in-

can now serve as a general right-hand bound, so the previous
ertia. We introduce theninimum-slope inertial limited local Ivsis of the standard model based
sandpile(MILLS) model, which has a second critical slope analysis of fne slandard model based on troygie cannot
' be extended to this model.

Foap:SIrg Set?rr]’etgggfcrltg vtvrillzebseh?jlgp@s.itg dovgnV\tlr:]sr;irit ;'ii(: Forz.=1, the sandpile soon reache_s a trivial steady state
obeyingi with z,=1 V| independently of;,. Inertial effects are now
indistinguishable from topplings, and added particles move
downslope by either mechanism and leave the system in an
Zj<Z, (2)  unaltered state. Varying, will change the time taken for the
particle to reach the right-hand boundary, but only for
or, if no such site exists, leave the system. This calculation ig.=2 canz;, have any influence on the nature of the critical
performed right to left for each unstable pile, and individu- state.
ally for each of thez; particles involved in every toppling, If z,= —<0, inertial effects will dominate, and all toppling
recalculating the slopes as a particle comes to rest. An exarticles willimmediately leave the system, as if the sandpile
ample is given in Fig. 1 for,=2 andz,=3. Note that we has become infinitely slippery. This is equivalent to the case
have implicitly introduced a time frame for inertial effects r=0 for the model ir{8]. Since sites with negative slope are
which is much smaller than that of toppling events. Thisrare, z,<0 will have a similar effect toz,,=—«. For
separation of time scales means that the time taken for an,<z., no particle will come to rest on a site with critical
unstable site to begin to topple is much longer than that foslope and so no sites to the right of the initial topple can
the ensuing particle motion itself. become unstable. As a result, there will be no forward top-
As a realistic physical system, this model does have sompling, and the avalanche will consist solely of the back-
obvious drawbacks, the most notable being that a particlavalanche.
will be stopped just as easily if it has just toppled, or if it has It may appear that implementing inertia in this manner
rolled down a large region of slopesz,. We could, of could allow for a large cluster of sliding particles to come to
course, make;, dependent on each particle’s previous mo-rest simultaneously on the same site, say aisiih z; large
tion, but it is the lack of inherent memory that makes muchand negative. It is easy to prove, however, that at nagst
of the subsequent analysis possible. Furthermore, with thiparticles can stop on a site during any one step in the top-



55 CROSSOVER TO SELF-ORGANIZED CRITICALITY IN ... 2575
pling process. To see this, first realize that a back-avalanchexhibit true power-law behavigi7]. In this paper, we follow
consists of one topple per avalanche time step, so to get mokrug, Socolar, and Grinsteif8] in identifying scale invari-
thanz, particles moving at once we must haxg>z.. Fur-  ance with a broadening of the avalanche size distribution
thermore, a sit&<i must topple, and subsequently allow at with the system size. This is a valid approach, since if the

least one particle to slide through it, i.e., critical state were instead governed by exponentially decay-
ing correlations, then increasing the system size far beyond

k= ZcZZpn,s (3 the correlation length could not alter the avalanche size, and

so there would be no such broadening. Two examples of

so for this sequence of events to occur requEgEs2z;.  drop-size frequency distributions are given in Fig. 2, where

Although sitek+1 toppling could contribute to such a large the drop size is defined as the number of particles to leave
slope, havingz, >z on the previous step would simulta- the pile as the result of a single particle addition. The distri-
neously requirez, <0, except at the left-hand boundary of ption broadens forz,=2z. when the system size is
the avalanche, as closer analysis soon reveals. It should NoYubled. which is clearly not the case fpr=0: thus the

be apparent that for any site to gain more tfz@rpartlc!es system is not SOC fog;,=0. It is obviously important to
during any one avalanche step, there must already exist a si

. . . : ﬁ d a value ofz;,, between these two extremes at which the
in the system to which this has already happened. Since pas-_~ . X
. - ' ransition between SOC and non-SOC behavior occurs.
ticle addition cannot create such a site, we must conclude L : .

The distribution of drop sizes is not always a useful mea-

that they never occur. Intuitively, this result implies that in-

ertial effects serve only to broaden the shape of the avasure of avalanche size, since fg=z. the maximum drop
lanche. size is justz,+1, as the following analysis demonstrates.

If z,=c0, inertial effects will be so weak that toppling SUPPOSe an avalanche is started by the addition of a particle
particles will never move by more than one site, and we jus®nto a sitei with critical slope, so that before toppling we
have the LLS model. In fact, from the result given in the havez;=z.+1 andz;_;<z.—1. When sitd topples,z; will
previous paragraph, it should be apparent that the maximugiecrease by at leagt, possibly more if any particles stick to

slope that a site can reach ig2 so if z,=2z, inertial i+1, so nowz<1 andz;_;<2z.—1. Presuming now that
effects become redundant, and the MILLS model reduces to— 1 topples, all but possibly one particle will stick ¢
the standard model. giving z;_1=<0. Even ifi —2 now topples, no particles can

In [5] it was suggested that it was the shape of the parslide pasi —1, and so nov; _,<0. From now on this is all
ticles that determined the nature of the critical pile. Althoughthat happens; toppled particles neither slide nor cause any
any sandpile model is oversimplified compared to real pilesurther topples. The avalanche will eventually end with at
of any substance, for instance, in failing to allow for the mostz.+1 particles from the leading edge of the avalanche
particles to overlap and for ignoring any variation in particle moving beyond sité and potentially contributing to the drop
dimensions, it is still instructive to consider qualitatively size. More qualitatively, toppling is minimal fa,<z., and
how the two parameterg. and z;, might relate to actual the bulk of the sliding is limited to within the avalanche for
systems. Suppose the particles all have an aspectaatto  z,=z., so forz,,=z. we should expect particle transport to
vertical stack consisting of rounded particles will clearly bebe low. Less commonly considered measures of avalanche
much less stable than a stack of flat particles,zsawill size, such as the total number of topples involved, must be
decrease aa decreases. The paramei®f should also de- used in this case.
crease witha, since rounder particles will roll more easily For z,=1 andz.=2, using the drop-size distributions to
and each site will be narrower and hence easier to traverseest for SOC behavior becomes ambiguous. Although there is
Indeed, varyinge should cause;, to change faster than, broadening for small system sizes, the plots for larger sys-
does, so we can see that the ratjo/z. will increase with  tems are inconclusive, and cannot be used to differentiate
a. A more precise analysis in this manner is possible, bubetween true scale invariance or just a large correlation
any such accuracy is lost within the artificial framework length. An alternative does exist, since wigps<z. the ava-
common to all sandpile models. lanche size is bounded above by the distance between

In summary, the MILLS model differs from the LLS troughs, so a system with a finite concentration of troughs
model by the extra parametey,. For z,,=2z. we just get must have a finite correlation length and hence cannot be
the LLS model, forz,, <z, the toppling process consists of SOC. The trough density, being just a single value, is much
just the back-avalanche, and fpf<0 the majority of slid- less susceptible to noise, and can be measured reliably for
ing particles leave the system immediately after toppling. largerL. The distribution of trough densities fag=2 and
for L up to 2048 is given in Fig. 3. That,=1 is not SOC is
now evident, as the trough density tends to a finite value,
although this value is small, corresponding to a large corre-

A feature common to all SOC models is the existence ofation length, which explains the observed broadening of the
power laws. This is only strictly true for infinite systems, dropsize distribution in small systems. Fpg=2z.=2, the
however. Finite systems, such as those carried out on a cortrough density approaches zero with system size faster than
puter, tend to include a finite-size cutoff. The one-for any other value of;,, corresponding to a singular cor-
dimensional sandpile model is somewhat unique in this rerelation length and SOC behavior. These results are borne
spect as the finite-size effects come to dominate the systerout by the mean-field analysis in Sec. IV.
for reasons that are not yet fully understd@d. Even simu- Another useful measure to consider is the average slope
lations for the standard model with>50 000 have failed to S,

Ill. RESULTS
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FIG. 2. Distribution of drop sizes far,,=4 and 0, and for two different system sizes, witl+ 2. Circles correspond tb=512, crosses
to L=1024.

1t then happen for sité —1, thenL—2, and so on. Thus the
S= L E z;, (4)  effect of any avalanche reaching the right-hand boundary is
=1 to leave behind a cluster of sites with slopes in the interval

where tan(S) is the angle of reposeThe variation ofS  [Zin.Zc]. Furthermore, the slopes in this region are stable
with L andz,, is given in Fig. 4. Forz,,<2 the lines con- updgr subsequent particle addition on any site to its _Ieft.
verge on values in the range<iS<1.2. It is already known Similar clusters should grow throughout the pile for similar
[7] that for z,,=4 the slope forL— is S=32. Comparing reasons, although their right-hand edges will not be fixed.
this line to those for othez,, in Fig. 4, it could be judged This has special significance fop=z., since the clusters of
that the curves for,,=2 andz,,=3 both tend tcS=2 in a  sites will all have slope, andS is expected to tend to a
similar manner. Since convergence is slow, however, verifyvalue at least close tg.. Given that this system becomes
ing these asymptotic limits is impossible from this datadominated by sites of critical slope, tlzg+ 1 particles that
alone. Taking logarithmic plots to project the lines further, asslide from any avalanche should all leave the pile; thus the
was done successfully for the standard mddg| fails here  modal drop size should also be the maximum ane; 1.

as it gives reasonable straight line fits for a range of limitingThis has been confirmed by the numerical studies.
slopes. Instead, a rough prediction of the asymptotic slope

for z,,=2 is given by the following qualitative argument.

For z,,<z., particles leaving the pile cannot cause the IV. MEAN-FIELD ANALYSIS
rightmost sitei=L to topple, although ifz, <z, they will
stick there and increase_. Once z is in the range Christensen and Olanfi12] successfully formulated a

Zin<2z <z., all particles will slide overL, so z is fixed random nearest-neighbor mean-field model for critical height
until the end of the current avalanche. The same thing willsandpiles. Directly extending their procedure to critical slope
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models has proved to be intractable, but the principle of tak-
ing random neighbors in an infinite system can still be ap-
plied to the MILLS model with some success. Utilizing this 1
approach is nontrivial, however, as the dynamics of the sys- Shi1— St T (8
tem change significantly ag, is varied. In this section we
present a range of models fap=<4 with z.=2, comparing
their predictions to the numerical findings. All these models . . ,
are cast in terms of the slope distributif,(t)}, where each and in a S|m|lar'manner decreasing the slope of another ran-
S, (t) is defined to be the proportion of sites in the system a{j_omly chosen site by one. 'I_'roughs_ are assumed 1o be prima-
time t with slopen. For convenience, we also define r|I_y sites of _slope zero, so increasing the slope of a trou_gh
will give a site of slope 1, whereas the effects of decreasing
0 the slopes of troughs are ignored.
SHt)= 2 S(b), (5) When a particle is added to a site of slope two, E@}.
i=—o and(8) must be replaced by equivalent rules for the whole of
the subsequent sequence of topples. There are two cases to
which is the trough density. As these slopes represent theonsider—if the site to the immediate Igtiere chosen at
sandpile in its stable state, the maximum value angan random has slope 1, a slide event occurs, removing two
take is two and particles from the system but leavid@,(t)} unchanged.
Otherwise, we obtain a full avalanche which only alters the
Si+S,+S,=1. (6) slopes at its leading edderhere the particle was addeand
its trailing edge(at the trough that halted the topplinghe
The simplest case to analyzezdgs= —«, where any ava- net result of both these edge effects is the lose a trough and
lanche propagates back to the first trough, and all topplea site of slope two, and to gain two sites of slope 1. It is now
particles are removed from the system. Particle additiorstraightforward to write down rate equations ff8,(t)},
alone has the effect of increasing the slope of a randomlwith the time scale normalized tb particle additions per
chosen site froom ton+1, unit t,
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d d
T?:_ZSZ+81+8152’ (9) d—St2=—282+Sl+8182—)\(%), (13
d d -S
d—?=—zsl+sT+3sz—slsz, (10) d_Stl:_231+ST+382_SlSZ+>‘ 1+ Slz_S:), (14)
d d S
d_StT:_ST+Sl_SZ- (11) d—StT=—5T+sl—sz+)\ ﬁ—l). (15

These equations can be justified directly—for instanceThese equations now converge to S;(S;,S,)
the first term on the right-hand side of H§.0) corresponds ~(0.09,0.65,0.26), whereas numerically the slope distribu-
to particle addition onto or adjacent to a site of slope 1, thdion is (0.07,0.68,0.25). Note that the trough denStyis
second term is for a particle added to a trough, the third ternsmall but non-zero, corresponding to a large but finite corre-
accounts for particle addition adjacent to or onto a site ofation length. Thus, as noted in Sec. lll, large system sizes
slope 2, where the latter instance invokes an avalanche, aradte required to demonstrate that this system is not SOC.
finally the fourth term subtracts out trivial slide events. In  Forz,=2, the interesting nature of the avalanche requires
practice, however, it is simpler to derive these equations by special set of rate equations, which can be derived in a
writing down all nine possible combinations of pairs of sites,similar manner to before by considering the consequences of
i.e.,, (TT) (T1) (T2) (1T) (1D (12 (2T) (21) and(22), then  particle addition to a pair of sites with arbitrary slopes,
computing directly the effects of particle addition to the
right-hand site and weighting them accordingly. ds, 5
Equations (9)—(11) converge on the stable solution qi ~Sr(S1m25)+Situ 1-5,
(Sr,S:,S,)=(%,3,3), in good agreement with the numerical
values (0.18,0.48,0.3% Since the influence of sites with ds, S-S
strictly negative slope have been ignored, this mean-field X1 _ _ M
theory actually covers the range of aj|<0, and indeed the dt 251+ 53, St S+l 1+ 1-S, )
agreement still holds up t,=0. Forz;,=1 the avalanching 17)
particles can no longer be ignored, and terms need to be
added to account for where they come to rest. The expected ds; Sr
number of particles brought into motion during an avalanche TR Sl—stl—M(E), (18
depends on the state of the site to the immediate left of the

site where the first particle was added. If this site has slope _ . .
less than two, then just the one site topples. Otherwise, th hereu(t) =S,(2+$5,) is the expected number of particles

number of sites that topple is half the average distance b%ﬁgfs:merggugotigrﬁ* rlgh; dorLiE[he pt?]rélde gfeﬂgin' Alstgﬁthji%:

tween troughs. In this random neighbor model, the probabil . 1 N .
ity that two nearest troughs are a distanceapart is (Sr.S;,5,)—(0,0,1) with$,~1-S5, andS;~0, cubic cor-

(1-S;)'S;. Consequently, half the mean distance betWeenrectlons are required for it to be stable. Numerically, the

; . slopes are (0.01,0.08,0.91) for=2048 but, as mentioned in
troughs is (+ S7)/2Sy, and the total number of sites that . ; )
topple during an avalanche is on averadge+S; j::n.a:"ln:j,st?ﬁe ﬁgrlp;?gtﬁ ibSLIJCt)i%i ?(E) %ef)rs to 2, which
+S,[(1—S7)/2S;]. Each toppled site releases two particles, P L

so we will need a factor of 2. Furthermore, since avalanche;sn gohri z,}:l: ibﬁ!{lrigzgl S\‘X}:S Iggo(l:\;?gullgtiin ?;/‘?e:nt?:tsvézsnolt\r/]z
are initiated by particle addition to sites of slope 2, we will gnly Y 9

states before and after an avalanche becomes impossible. In-
also need a factor db,. Thus, the expected number of top- : .
; : 2 stead, we introduce the followinlpcal slope argumento
pling particles per unit time is

predict the slope distribution in the critical state. Within an

avalanche, a toppled site deposits a pair of particles to its
1_STSz _ (12) right, which, after any inertial motion, settle and possibly

Sr cause further toppling. Keeping our random neighbor ap-

proach, the expected number of further topples caused takes
Each of these\ (t) particles will stop on a trough, creating a the same constant valug; throughout the avalanche. If
site with slope 1. This will also cause the site to the imme-E;<1 then avalanches would die out exponentially quickly,
diate left to decrease its slope by one. Moreover, we knowarticles will not be transported from the pile, and so the
that the particle passed over this site, so it cannot be aandpile will build up, increasing the average slope and
trough. Therefore it must have slope 1 or 2 with probabilityhence alscE;. If E;>1, avalanches would grow exponen-
S, /(1-S;) or S,/(1—-Sy), respectively. Since we are ig- tially and large numbers of particles would leave the pile,
noring any correlations between where a particle starts movdecreasings, . Although transport from the pile is not actu-
ing and where it stops, all we need to do is to add extra termally catered for by this model, we infer th&=1 in the
to the right hand sides of Eq$9)—(11) to account for the critical state, so finding an expression fgf in terms of
changes in the slopes caused by Xi{g) particles coming to {S,(t=«)} gives an additional constraint which might help
rest, to fix the slope distribution.

S

- 1), (16

AMD)=3| 2(1-$)+
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This local slope argument has several deficiencies, apart An essential requirement of any SOC system is that it is
from the obvious drawbacks of the random neighbor apgoverned by local driving forcegl]. For z,>z., inertial
proach. Back-avalanches have been ignored, so this methedfects only come into play inside an avalanche, since it is
will certainly break down forzi,<2. The effects of single- only within an avalanche that sites with slopes greater than
particle addition has not been accounted for, which will fur-zc can occur. Thus the couplings remain short range, and
ther exasperate the situation whgnis small. Although this  sOC behavior is preserved. Faf<z., however, particles
gives a limited range of applications for this model, it has thézan slide far beyond the avalanche, so interactions become
advantage of being conceptually and mathematically simple,onjocal, and the system ceases to be SOC. We might na-
For instance, in the standard modg/=4, adding two par- i ey expect that a system with, =z, will also fail to be

ticles to any site with a slope greater than zero will cause 0N especially since the system becomes dominated by
further topple, soE=1-Sr. Requiring that this equals 1 sites of slopez., which should allow particles to slide

givesS;=0, as expected. ; T
For z, =3, consider the effect of adding the particles tothrough large dlstanceg. However_, the exacf[ analysis in Sec.
) o . ; Il proved that only a tiny proportion of particles move be-
two adjacent siteg, andi+1. If z<2, then both particles . :
yond the avalanche. In fact, the vast majority move by just

would stick toi, giving the site a slopeg;+2, which will it hich i cainl local driving f
topple ifz;=1. However, ifz;=2 then the last particle added one site, which 1s certainly a local driving force, so we can
conclude that a system with,=z. is SOC.

will slide onto the adjacent site, resulting #, ;—z;,,+1 i . )
) 9B 12241 In the experiments carried out on piles of r{éd, power-

and z; remaining unchanged. Thus the expected number of 4 - ; L
further topples is law behavior was only observed for rice with sufficiently

large aspect ratio. In Sec. Il it was argued thgtz. should
Et=Sl+S§. (29 increase with the particle aspect ratio. Thus, if the aspect
. ) ) . ratio is increased such that, becomes greater than, the
Setting this equal to 1 and employing H@), we obtain an  \|LLS model gives a possible explanation for the appear-
equation for the trough density, ance of power laws—the system has crossed over into the
S;=5,(S,— 1). (20) SOC regim_e. If_this were inde_ed the case, we must assume
that the finite-size effects which destroyed true power-law
By definition, all theS, must lie in the rangg0,1]. However, behavior in our numerical simulations do not have the same
Eq. (20) is strictly negative for 82S,< 1, so for consistency effect in the experimental setup. However, many non-SOC
we must haveéS,=0 or 1. Avalanches could never begin in a Systems also exhibit power laws, and an alternative model
system with S,=0, so we conclude that$(,S;,S,) has recently been proposed by Newman and Snefbgn

=(0,0,1), in agreement with the numerical work. Here, they claimed that a SOC approach is invalid when the
power laws have characteristic exponents in the vicinity of 2,
V. CONCLUSIONS AND DISCUSSION as was observed for the rice piles. Their model is instead

driven by external noise, but still predicts a crossover from
It has been demonstrated that the MILLS model withpower-law behavior.

z.=2 displays self-organized criticality for systems with  Regardless of its experimental applications, the MILLS
zi,=12., but SOC is lost wherz;,<z.. The SOC state for model represents an interesting addition to the range of sand-
z;,=1z, was identified by the broadening of the drop-size dis-pile systems already studied, in that it provides an inertial
tribution with the system size, whereas fgy<<z. the exist- sandpile model that is SOC for a broadband of parameter
ence of a finite correlation length was found both numeri-space—that is, without the need for fine tuning—and inde-
cally and from the mean-field theories. Preliminary pendent of the system size. Extending this model to higher
numerical results foe, up to 4 demonstrate that the transi- dimensions or to critical height sandpiles should in principle
tion pointz;,= z; holds more generally. We postulate that for be straightforward, but since our original motivation was to
all z.>1 the model is SOC only whemn,=z., and now try and account for the results from the rice pile experiments,

argue why this should be so. we chose to base our model on that system.
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