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Crossover to self-organized criticality in an inertial sandpile model

D. A. Head* and G. J. Rodgers†

Department of Physics, Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
~Received 26 June 1996!

We introduce a one-dimensional sandpile model that incorporates particle inertia. The inertial dynamics are
governed by a parameter that, as it passes through a threshold value, alters the toppling dynamics in such a way
that the system no longer evolves to a self-organized critical state. A range of mean-field theories based on a
kinetic equation approach is presented that confirm the numerical findings. We conclude by considering the
physical applications of this model, particularly with reference to recent experimental results.
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I. INTRODUCTION

The concept ofself-organized criticality~SOC! was intro-
duced by Bak, Tang, and Wiesenfeld@1# as a possible expla
nation for the common occurrence of scale-invariance in
ture. To demonstrate this behavior, they introduced
sandpile model, a driven dissipative cellular automata who
dynamics are defined by local interactions. Despite the sh
range dynamics, the system organizes itself into a none
librium critical state with no finite correlation length an
hence no characteristic length scale. A feature common t
SOC systems is that the sizes of fluctuations follow pow
law distributions, a direct consequence of the scale inv
ance. However, comparisons with real systems have
with only partial success. Power laws were observed i
granular mixture when avalanches were initiated by water
the pile @2#, but not in a pile of glass beads that was grad
ally tilted @3#. Adding grains individually to a conical sand
pile only showed power laws for sufficiently small piles@4#.
Recently, Fretteet al. @5# performed experiments on one
dimensional piles of rice, and found power-law behav
only for grains with a sufficiently large aspect ratio. In lig
of these experiments, we believe it would be informative
construct a sandpile model with greater physical applica
ity, while hopefully retaining some of the interesting dynam
ics.

One important ingredient missing from the basic mode
inertia. To the best of our knowledge, there have only b
two attempts to construct an inertial sandpile model. Pr
and Olami @9# chose to associate moving particles with
decrease in the local stability, and found SOC behavior o
for small systems, in both one and two dimensions, t
giving an explanation for the results in@4#. Krug, Socolar,
and Grinstein@8# gave a single measure of momentum f
the entire cluster of moving particles in a one-dimensio
system. They found that their inertia parameter needed t
fine tuned to zero for the system to become SOC.

In this paper, we consider an interesting way of incorp
rating inertia into the sandpile model. A full description
the model is given in Sec. II, but briefly we suppose th
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moving particles only come to rest on those sites wh
slopes are not too steep, where the definition of ‘‘too stee
is controlled by a parameter. Our main result is the crosso
between SOC and non-SOC behavior as this param
passes through a threshold value. The existence and valu
this transition point has been confirmed by extensive num
cal analysis, mean-field theories, and qualitative reasonin

This paper is arranged as follows. Our model is defin
and some of its immediate consequences explored in Se
In Sec. III, the results of numerical simulations are given
the simplest nontrivial sandpiles. These results are confirm
by the mean-field analysis given in Sec. IV, where a r
equation approach has been adopted. Finally, in Sec. V
explain the nature of the transition threshold and discuss
plying the model to real physical systems.

II. MODEL

A one-dimensional sandpile is defined by a set of inte
heightshi , i51, . . . ,L, or equivalently by the local slope
zi5hi2hi11. The right-hand boundary is taken to be ope
zL5hL , whereas the left-hand boundary is treated as clos
z050. Particles are added sequentially to randomly cho
sites, increasing their height by one unit. In the limited loc
sandpile~LLS! model @10#, a sitei becomes unstable whe
zi becomes greater than thecritical slope parameter zc . Any
such unstable site willtopple, zc particles will leave sitei ,
and will move to sitei11 ~or leave the system ifi5L), so

zi21→zi211zc ,

zi→zi22zc , ~1!

zi11→zi111zc ,

with equivalent rules for toppling at boundaries. It is no
possible forzi21 and/orzi11 to become unstable and toppl
and an avalanche will begin. We call the series of the ini
topplings at sitesi21, i22, i23, . . . theback-avalanche.
A back-avalanche propagates to the first sitej, i with
zj<0, where such sites are calledtroughs. In terms of the
slopes before particle addition to sitei , zi2151 will also
stop a back-avalanche. Some previous literature@11# refers
to such instances asslide events. Topplings occur on a time
2573 © 1997 The American Physical Society
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FIG. 1. An example of the toppling process in the MILLS model, forzc52 andzin53. ~a! Particle added to a site with critical slope. Th
site becomes unstable and topples.~b! The first toppling particle sticks to the adjacent site, giving it a local slope of 3. The site marked
an asterisk is still in the process of toppling.~c! The second particle slides through the site with slope 3 to stop at the next site. All si
this region are now stable.
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scale much smaller and separated from that of particle a
tion, in that no more particles are added to the pile until
avalanche is over and every site has become stable (zi<zc
; i ).

As this model stands, the inertia of the toppling partic
has been ignored, any momentum in the topple is assume
be dissipated instantaneously from the sandpile as soo
the particles have moved. The previous attempts to inco
rate inertia into the system@8,9# used quantities that evolve
throughout the avalanche and hence introduced a form
memory into the system. In this paper, we consider a se
rules for toppling that requires just one extra, tim
independent quantity, but nonetheless intuitively mimics
ertia. We introduce theminimum-slope inertial limited loca
sandpile~MILLS ! model, which has a second critical slop
parameter, theinertial threshold zin . Now when a sitei
topples, the particles will be deposited on the first sitej. i
obeying

zj,zin , ~2!

or, if no such site exists, leave the system. This calculatio
performed right to left for each unstable pile, and individ
ally for each of thezc particles involved in every toppling
recalculating the slopes as a particle comes to rest. An
ample is given in Fig. 1 forzc52 andzin53. Note that we
have implicitly introduced a time frame for inertial effec
which is much smaller than that of toppling events. Th
separation of time scales means that the time taken fo
unstable site to begin to topple is much longer than that
the ensuing particle motion itself.

As a realistic physical system, this model does have so
obvious drawbacks, the most notable being that a part
will be stopped just as easily if it has just toppled, or if it h
rolled down a large region of slopes>zin . We could, of
course, makezin dependent on each particle’s previous m
tion, but it is the lack of inherent memory that makes mu
of the subsequent analysis possible. Furthermore, with
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implementation of inertia the sandpile takes a microsco
cally smooth, realistic shape which further justifies its stu

We can immediately make some general observati
about the MILLS model. Since the particles toppling from
unstable site all move at least one step, the slope of the
to the immediate left will always increase byzc independent
of the value ofzin . Thus the back-avalanches in this mod
are identical to those in the standard model, and con
quently troughs are still important as bounds of the left-ha
edge of an avalanche. However, troughs no longer neces
ily bound the right-hand edge of an avalanche as they did
the LLS model. Indeed, no expression involving a single s
can now serve as a general right-hand bound, so the prev
analysis of the standard model based on troughs@6,8# cannot
be extended to this model.

For zc51, the sandpile soon reaches a trivial steady s
with zi51 ; i independently ofzin . Inertial effects are now
indistinguishable from topplings, and added particles mo
downslope by either mechanism and leave the system in
unaltered state. Varyingzin will change the time taken for the
particle to reach the right-hand boundary, but only f
zc>2 canzin have any influence on the nature of the critic
state.

If zin52`, inertial effects will dominate, and all toppling
particles will immediately leave the system, as if the sandp
has become infinitely slippery. This is equivalent to the ca
r50 for the model in@8#. Since sites with negative slope a
rare, zin<0 will have a similar effect tozin52`. For
zin<zc , no particle will come to rest on a site with critica
slope and so no sites to the right of the initial topple c
become unstable. As a result, there will be no forward t
pling, and the avalanche will consist solely of the bac
avalanche.

It may appear that implementing inertia in this mann
could allow for a large cluster of sliding particles to come
rest simultaneously on the same site, say a sitei with zi large
and negative. It is easy to prove, however, that at moszc
particles can stop on a site during any one step in the
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pling process. To see this, first realize that a back-avalan
consists of one topple per avalanche time step, so to get m
thanzc particles moving at once we must havezin.zc . Fur-
thermore, a sitek, i must topple, and subsequently allow
least one particle to slide through it, i.e.,

zk2zc>zin , ~3!

so for this sequence of events to occur requireszk.2zc .
Although sitek11 toppling could contribute to such a larg
slope, havingzk11.zc on the previous step would simulta
neously requirezk<0, except at the left-hand boundary
the avalanche, as closer analysis soon reveals. It should
be apparent that for any site to gain more thanzc particles
during any one avalanche step, there must already exist a
in the system to which this has already happened. Since
ticle addition cannot create such a site, we must concl
that they never occur. Intuitively, this result implies that i
ertial effects serve only to broaden the shape of the a
lanche.

If zin5`, inertial effects will be so weak that topplin
particles will never move by more than one site, and we j
have the LLS model. In fact, from the result given in t
previous paragraph, it should be apparent that the maxim
slope that a site can reach is 2zc , so if zin>2zc , inertial
effects become redundant, and the MILLS model reduce
the standard model.

In @5# it was suggested that it was the shape of the p
ticles that determined the nature of the critical pile. Althou
any sandpile model is oversimplified compared to real p
of any substance, for instance, in failing to allow for t
particles to overlap and for ignoring any variation in partic
dimensions, it is still instructive to consider qualitative
how the two parameterszc and zin might relate to actua
systems. Suppose the particles all have an aspect ratioa. A
vertical stack consisting of rounded particles will clearly
much less stable than a stack of flat particles, sozc will
decrease asa decreases. The parameterzin should also de-
crease witha, since rounder particles will roll more easil
and each site will be narrower and hence easier to trave
Indeed, varyinga should causezin to change faster thanzc
does, so we can see that the ratiozin /zc will increase with
a. A more precise analysis in this manner is possible,
any such accuracy is lost within the artificial framewo
common to all sandpile models.

In summary, the MILLS model differs from the LLS
model by the extra parameterzin . For zin>2zc we just get
the LLS model, forzin<zc the toppling process consists o
just the back-avalanche, and forzin<0 the majority of slid-
ing particles leave the system immediately after toppling

III. RESULTS

A feature common to all SOC models is the existence
power laws. This is only strictly true for infinite system
however. Finite systems, such as those carried out on a c
puter, tend to include a finite-size cutoff. The on
dimensional sandpile model is somewhat unique in this
spect as the finite-size effects come to dominate the sys
for reasons that are not yet fully understood@6#. Even simu-
lations for the standard model withL.50 000 have failed to
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exhibit true power-law behavior@7#. In this paper, we follow
Krug, Socolar, and Grinstein@8# in identifying scale invari-
ance with a broadening of the avalanche size distribut
with the system size. This is a valid approach, since if
critical state were instead governed by exponentially dec
ing correlations, then increasing the system size far bey
the correlation length could not alter the avalanche size,
so there would be no such broadening. Two examples
drop-size frequency distributions are given in Fig. 2, whe
the drop size is defined as the number of particles to le
the pile as the result of a single particle addition. The dis
bution broadens forzin52zc when the system size i
doubled, which is clearly not the case forzin50; thus the
system is not SOC forzin50. It is obviously important to
find a value ofzin between these two extremes at which t
transition between SOC and non-SOC behavior occurs.

The distribution of drop sizes is not always a useful me
sure of avalanche size, since forzin5zc the maximum drop
size is justzc11, as the following analysis demonstrate
Suppose an avalanche is started by the addition of a par
onto a sitei with critical slope, so that before toppling w
havezi5zc11 andzi21<zc21. When sitei topples,zi will
decrease by at leastzc , possibly more if any particles stick to
i11, so nowzi<1 andzi21<2zc21. Presuming now tha
i21 topples, all but possibly one particle will stick toi ,
giving zi21<0. Even if i22 now topples, no particles ca
slide pasti21, and so nowzi22<0. From now on this is all
that happens; toppled particles neither slide nor cause
further topples. The avalanche will eventually end with
mostzc11 particles from the leading edge of the avalanc
moving beyond sitei and potentially contributing to the dro
size. More qualitatively, toppling is minimal forzin<zc , and
the bulk of the sliding is limited to within the avalanche fo
zin>zc , so forzin5zc we should expect particle transport
be low. Less commonly considered measures of avalan
size, such as the total number of topples involved, must
used in this case.

For zin51 andzc52, using the drop-size distributions t
test for SOC behavior becomes ambiguous. Although ther
broadening for small system sizes, the plots for larger s
tems are inconclusive, and cannot be used to different
between true scale invariance or just a large correla
length. An alternative does exist, since whenzin<zc the ava-
lanche size is bounded above by the distance betw
troughs, so a system with a finite concentration of troug
must have a finite correlation length and hence cannot
SOC. The trough density, being just a single value, is mu
less susceptible to noise, and can be measured reliably
largerL. The distribution of trough densities forzc52 and
for L up to 2048 is given in Fig. 3. Thatzin51 is not SOC is
now evident, as the trough density tends to a finite val
although this value is small, corresponding to a large co
lation length, which explains the observed broadening of
dropsize distribution in small systems. Forzin5zc52, the
trough density approaches zero with system size faster
for any other value ofzin , corresponding to a singular cor
relation length and SOC behavior. These results are bo
out by the mean-field analysis in Sec. IV.

Another useful measure to consider is the average s
S,
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FIG. 2. Distribution of drop sizes forzin54 and 0, and for two different system sizes, withzc52. Circles correspond toL5512, crosses
to L51024.
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where tan21(S) is the angle of repose. The variation ofS
with L and zin is given in Fig. 4. Forzin,2 the lines con-
verge on values in the range 1,S,1.2. It is already known
@7# that for zin54 the slope forL→` is S5 3

2. Comparing
this line to those for otherzin in Fig. 4, it could be judged
that the curves forzin52 andzin53 both tend toS52 in a
similar manner. Since convergence is slow, however, ver
ing these asymptotic limits is impossible from this da
alone. Taking logarithmic plots to project the lines further,
was done successfully for the standard model@7#, fails here
as it gives reasonable straight line fits for a range of limit
slopes. Instead, a rough prediction of the asymptotic sl
for zin52 is given by the following qualitative argument.

For zin<zc, particles leaving the pile cannot cause t
rightmost sitei5L to topple, although ifzL,zin they will
stick there and increasezL . Once zL is in the range
zin<zL<zc , all particles will slide overL, so zL is fixed
until the end of the current avalanche. The same thing
-

s

e

ll

then happen for siteL21, thenL22, and so on. Thus the
effect of any avalanche reaching the right-hand boundar
to leave behind a cluster of sites with slopes in the inter
@zin ,zc#. Furthermore, the slopes in this region are sta
under subsequent particle addition on any site to its l
Similar clusters should grow throughout the pile for simil
reasons, although their right-hand edges will not be fix
This has special significance forzin5zc , since the clusters o
sites will all have slopezc, andS is expected to tend to a
value at least close tozc . Given that this system become
dominated by sites of critical slope, thezc11 particles that
slide from any avalanche should all leave the pile; thus
modal drop size should also be the maximum one,zc11.
This has been confirmed by the numerical studies.

IV. MEAN-FIELD ANALYSIS

Christensen and Olami@12# successfully formulated a
random nearest-neighbor mean-field model for critical hei
sandpiles. Directly extending their procedure to critical slo
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models has proved to be intractable, but the principle of t
ing random neighbors in an infinite system can still be a
plied to the MILLS model with some success. Utilizing th
approach is nontrivial, however, as the dynamics of the s
tem change significantly aszin is varied. In this section we
present a range of models forzin<4 with zc52, comparing
their predictions to the numerical findings. All these mode
are cast in terms of the slope distribution$Sn(t)%, where each
Sn(t) is defined to be the proportion of sites in the system
time t with slopen. For convenience, we also define

ST~ t !5 (
i52`

0

Si~ t !, ~5!

which is the trough density. As these slopes represent
sandpile in its stable state, the maximum value anyzi can
take is two and

ST1S11S251. ~6!

The simplest case to analyze iszin52`, where any ava-
lanche propagates back to the first trough, and all topp
particles are removed from the system. Particle addit
alone has the effect of increasing the slope of a random
chosen site fromn to n11,

FIG. 3. Trough densities@~number of troughs!/L# for zc52
against system size. Circles refer tozin54, squares tozin53, dia-
monds to zin52, plus signs tozin51, triangles tozin50, and
crosses tozin52`.
-
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Sn→Sn2
1

L
, ~7!

Sn11→Sn111
1

L
, ~8!

and in a similar manner decreasing the slope of another ra
domly chosen site by one. Troughs are assumed to be prim
rily sites of slope zero, so increasing the slope of a troug
will give a site of slope 1, whereas the effects of decreasin
the slopes of troughs are ignored.

When a particle is added to a site of slope two, Eqs.~7!
and~8! must be replaced by equivalent rules for the whole o
the subsequent sequence of topples. There are two case
consider—if the site to the immediate left~here chosen at
random! has slope 1, a slide event occurs, removing tw
particles from the system but leaving$Sn(t)% unchanged.
Otherwise, we obtain a full avalanche which only alters th
slopes at its leading edge~where the particle was added! and
its trailing edge~at the trough that halted the toppling!. The
net result of both these edge effects is the lose a trough a
a site of slope two, and to gain two sites of slope 1. It is no
straightforward to write down rate equations for$Sn(t)%,
with the time scale normalized toL particle additions per
unit t,

FIG. 4. Average slopes forzc52 against system size. Circles
refer tozin54, squares tozin53, diamonds tozin52, plus signs to
zin51, triangles tozin50, and crosses tozin52`.
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2578 55D. A. HEAD AND G. J. RODGERS
dS2
dt

522S21S11S1S2 , ~9!

dS1
dt

522S11ST13S22S1S2 , ~10!

dST
dt

52ST1S12S2 . ~11!

These equations can be justified directly—for instan
the first term on the right-hand side of Eq.~10! corresponds
to particle addition onto or adjacent to a site of slope 1,
second term is for a particle added to a trough, the third te
accounts for particle addition adjacent to or onto a site
slope 2, where the latter instance invokes an avalanche,
finally the fourth term subtracts out trivial slide events.
practice, however, it is simpler to derive these equations
writing down all nine possible combinations of pairs of site
i.e., (TT) (T1) (T2) (1T) ~11! ~12! (2T) ~21! and~22!, then
computing directly the effects of particle addition to th
right-hand site and weighting them accordingly.

Equations ~9!–~11! converge on the stable solutio
(ST ,S1 ,S2)5( 16,

1
2,

1
3), in good agreement with the numeric

values ~0.18,0.48,0.34!. Since the influence of sites wit
strictly negative slope have been ignored, this mean-fi
theory actually covers the range of allzin<0, and indeed the
agreement still holds up tozin50. Forzin51 the avalanching
particles can no longer be ignored, and terms need to
added to account for where they come to rest. The expe
number of particles brought into motion during an avalanc
depends on the state of the site to the immediate left of
site where the first particle was added. If this site has sl
less than two, then just the one site topples. Otherwise,
number of sites that topple is half the average distance
tween troughs. In this random neighbor model, the proba
ity that two nearest troughs are a distancer apart is
(12ST)

rST . Consequently, half the mean distance betwe
troughs is (12ST)/2ST , and the total number of sites tha
topple during an avalanche is on averageST1S1
1S2@(12ST)/2ST#. Each toppled site releases two particle
so we will need a factor of 2. Furthermore, since avalanc
are initiated by particle addition to sites of slope 2, we w
also need a factor ofS2. Thus, the expected number of to
pling particles per unit time is

l~ t !5S2S 2~12S2!1
12ST
ST

S2D . ~12!

Each of thesel(t) particles will stop on a trough, creating
site with slope 1. This will also cause the site to the imm
diate left to decrease its slope by one. Moreover, we kn
that the particle passed over this site, so it cannot b
trough. Therefore it must have slope 1 or 2 with probabil
S1 /(12ST) or S2 /(12ST), respectively. Since we are ig
noring any correlations between where a particle starts m
ing and where it stops, all we need to do is to add extra te
to the right hand sides of Eqs.~9!–~11! to account for the
changes in the slopes caused by thel(t) particles coming to
rest,
,
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dS2
dt

522S21S11S1S22lS S2
12ST

D , ~13!

dS1
dt

522S11ST13S22S1S21lS 11
S22S1
12ST

D , ~14!

dST
dt

52ST1S12S21lS S1
12ST

21D . ~15!

These equations now converge to (ST ,S1 ,S2)
'(0.09,0.65,0.26), whereas numerically the slope distri
tion is (0.07,0.68,0.25). Note that the trough densityST is
small but non-zero, corresponding to a large but finite cor
lation length. Thus, as noted in Sec. III, large system si
are required to demonstrate that this system is not SOC

Forzin52, the interesting nature of the avalanche requi
a special set of rate equations, which can be derived i
similar manner to before by considering the consequence
particle addition to a pair of sites with arbitrary slopes,

dS2
dt

5ST~S122S2!1S1
21mS S1

12S2
21D , ~16!

dS1
dt

522S1
21ST~3S22S11ST!1mS 11

ST2S1
12S2

D ,
~17!

dST
dt

52ST1S12S2S12mS ST
12S2

D , ~18!

wherem(t)5S2(21S2) is the expected number of particle
that emerge to the right of the particle addition. Althou
these equations admit the steady soluti
(ST ,S1 ,S2)→(0,0,1) withS1;12S2 andST;0, cubic cor-
rections are required for it to be stable. Numerically, t
slopes are (0.01,0.08,0.91) forL52048 but, as mentioned in
Sec. III, the asymptotic slope appears to beS52, which
demands the slope distribution (0,0,1).

For zin53, all the sites involved in an avalanche resol
in a highly nontrivial way, so calculating rates between t
states before and after an avalanche becomes impossible
stead, we introduce the followinglocal slope argumentto
predict the slope distribution in the critical state. Within a
avalanche, a toppled site deposits a pair of particles to
right, which, after any inertial motion, settle and possib
cause further toppling. Keeping our random neighbor
proach, the expected number of further topples caused t
the same constant valueEt throughout the avalanche. I
Et,1 then avalanches would die out exponentially quick
particles will not be transported from the pile, and so t
sandpile will build up, increasing the average slope a
hence alsoEt . If Et.1, avalanches would grow exponen
tially and large numbers of particles would leave the pi
decreasingEt . Although transport from the pile is not actu
ally catered for by this model, we infer thatEt51 in the
critical state, so finding an expression forEt in terms of
$Sn(t5`)% gives an additional constraint which might he
to fix the slope distribution.
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55 2579CROSSOVER TO SELF-ORGANIZED CRITICALITY IN . . .
This local slope argument has several deficiencies, a
from the obvious drawbacks of the random neighbor
proach. Back-avalanches have been ignored, so this me
will certainly break down forzin<2. The effects of single-
particle addition has not been accounted for, which will fu
ther exasperate the situation whenS2 is small. Although this
gives a limited range of applications for this model, it has
advantage of being conceptually and mathematically sim
For instance, in the standard modelzin54, adding two par-
ticles to any site with a slope greater than zero will cause
further topple, soEt512ST . Requiring that this equals 1
givesST50, as expected.

For zin53, consider the effect of adding the particles
two adjacent sites,i and i11. If zi,2, then both particles
would stick to i , giving the site a slopezi12, which will
topple ifzi51. However, ifzi52 then the last particle adde
will slide onto the adjacent site, resulting inzi11→zi1111
and zi remaining unchanged. Thus the expected numbe
further topples is

Et5S11S2
2 . ~19!

Setting this equal to 1 and employing Eq.~6!, we obtain an
equation for the trough density,

ST5S2~S221!. ~20!

By definition, all theSi must lie in the range@0,1#. However,
Eq. ~20! is strictly negative for 0,S2,1, so for consistency
we must haveS250 or 1. Avalanches could never begin in
system with S250, so we conclude that (ST ,S1 ,S2)
5(0,0,1), in agreement with the numerical work.

V. CONCLUSIONS AND DISCUSSION

It has been demonstrated that the MILLS model w
zc52 displays self-organized criticality for systems wi
zin>zc , but SOC is lost whenzin,zc . The SOC state for
zin>zc was identified by the broadening of the drop-size d
tribution with the system size, whereas forzin,zc the exist-
ence of a finite correlation length was found both nume
cally and from the mean-field theories. Prelimina
numerical results forzc up to 4 demonstrate that the trans
tion pointzin5zc holds more generally. We postulate that f
all zc.1 the model is SOC only whenzin>zc , and now
argue why this should be so.
.
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An essential requirement of any SOC system is that i
governed by local driving forces@1#. For zin.zc , inertial
effects only come into play inside an avalanche, since i
only within an avalanche that sites with slopes greater t
zc can occur. Thus the couplings remain short range,
SOC behavior is preserved. Forzin,zc , however, particles
can slide far beyond the avalanche, so interactions bec
nonlocal, and the system ceases to be SOC. We might
ively expect that a system withzin5zc will also fail to be
SOC, especially since the system becomes dominated
sites of slopezc , which should allow particles to slide
through large distances. However, the exact analysis in S
III proved that only a tiny proportion of particles move b
yond the avalanche. In fact, the vast majority move by j
one site, which is certainly a local driving force, so we c
conclude that a system withzin5zc is SOC.

In the experiments carried out on piles of rice@5#, power-
law behavior was only observed for rice with sufficient
large aspect ratio. In Sec. II it was argued thatzin /zc should
increase with the particle aspect ratio. Thus, if the asp
ratio is increased such thatzin becomes greater thanzc , the
MILLS model gives a possible explanation for the appe
ance of power laws—the system has crossed over into
SOC regime. If this were indeed the case, we must ass
that the finite-size effects which destroyed true power-l
behavior in our numerical simulations do not have the sa
effect in the experimental setup. However, many non-S
systems also exhibit power laws, and an alternative mo
has recently been proposed by Newman and Sneppen@13#.
Here, they claimed that a SOC approach is invalid when
power laws have characteristic exponents in the vicinity o
as was observed for the rice piles. Their model is inste
driven by external noise, but still predicts a crossover fro
power-law behavior.

Regardless of its experimental applications, the MILL
model represents an interesting addition to the range of s
pile systems already studied, in that it provides an iner
sandpile model that is SOC for a broadband of param
space—that is, without the need for fine tuning—and ind
pendent of the system size. Extending this model to hig
dimensions or to critical height sandpiles should in princip
be straightforward, but since our original motivation was
try and account for the results from the rice pile experimen
we chose to base our model on that system.
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